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Abstract. The resistance of self-healed mesoscopic struchms has been used for some time as 
a way to probe the characteristics of electrons and phonons in these systems. In this paper we 
consider the differences between low-frequency dynamic and static resistance measurements of 
mesoscopic systems in the steady state. We present a general description of these non-equilibrium 
experiments. and discuss the connection to an integration procedure used 10 determine the 
differences between the two methods of resistance measurement. We have applied the analysis to 
electron-heating experiments and have shown that the difference between the static and dynamic 
resistance depends on the electron-phonon coupling and the acoustic coupling appropriate for 
the mesoscopic structure. 

1. Introduction 

Over the past decade non-equilibrium experiments have been performed on metal 
microstructures to study a variety of phenomena associated with the reduced dimensionality 
of electrons and phonons [1-3]. Frequently, these experiments use a DC electric current 
passing through the microstructure to transfer energy to the electron system, thereby 
increasing the electron temperature. The electron-phonon system reaches a steady state 
with a characteristic energy relaxation time that depends on the electron-phonon coupling in 
the microstructure and the acoustic coupling between the microshucture and the supporting 
substrate. This situation is well described by an energy bottleneck, with the weakest process 
dominating the overall energy relaxation [4,51. The bottleneck also determines the non- 
equilibrium acoustic phonon distribution in the microstructure. 

To make a quantitative estimate of the energy relaxation time it is necessary to determine 
experimentally the steady-state value of the electron temperature. This has been achieved 
using thermometry based on, for example, Johnson noise [6], the Kondo effect 171, the 
Coulomb anomaly and weak localization [SI. In these phenomena, a temperature-dependent 
static resistance has been used to estimate the rise in the electron temperature as the DC 
electric current through the microstructure is increased. To enhance the signal-to-noise ratio, 
a low frequency AC bridge technique is often employed to measure the resistance. This is 
accomplished by applying a small low-frequency sensing current to the microstructure and 
using synchronous detection at the AC frequency. In this way the dynamic resistance, 
dV/dl, of the sample is measured as a function of the applied DC electric field. Obviously, 
if the sample is ohmic the static and dynamic resistances are the same. However, if the 
sample is non-ohmic, as expected in the case of self-heating due to the current through 
the sample, the dynamic and static resistances will differ. For metal samples of moderate 
disorder, the static resistance change due to the Coulomb anomaly [9] and weak localization 
[lo] is usually small compared with the impurity resistance. Therefore, when estimating 
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the electron temperature using a low frequency AC measurement in the Coulomb anomaly 
and weak localization regimes, it is necessary to account for any small differences between 
the static and dynamic resistance that occur from self-heating by the A c  and DC fields. 

In this paper we discuss a general form of the difference between the dynamic and 
static measurement of resistance and show that for mesoscopic, disordered metal systems 
it depends on the electron-phonon scattering rate and the phonon escape time from the 
structures. We show that the heating can be understood as a trajectory on an electric 
field, temperature and current density surface. The present approach elucidates the physics 
underlying an integration procedure introduced by others to correct for the difference 
between the static and dynamic resistances [ l l ,  121. Indeed, under certain assumptions 
the integration procedure and the general approach are mathematically equivalent. 

2. Model 

We consider the use of an AC technique in the presence of a DC electric field to measure the 
resistance of a metal microstructure. For convenience we formulate the problem in terms 
of the conductivity rather than resistance. The DC current density, J ,  through the film is a 
function of the DC electric field, E, across the film and the electron and phonon temperatures, 
Te and T,, respectively, in the film. In this paper we assume the elechon-electron scattering 
is sufficiently strong that Te is well defined. The acoustic phonon distribution, n(w),  in the 
steady state experiments is not expected to be a Bose distribution [4,5]. Equating n ( o )  to 
a Bose distribution a temperature can be assigned to each frequency, 

(1) T(w)  = hw/ks In(n(w)-' + 1). 

These temperatures can be used to define the effective phonon temperature, 

Tp = T(w)D(w)n(w)dw D(w)n(w)dw (2) s IS 
where D ( o )  is the acoustic phonon density of states. 

the field and the temperature as 
In general, J = J(T,, T,, E) and the change in J can be written in terms of changes in 

d J  = (aJ/aT,lE dT, + (aJ/ai-p)EdTp + (aJ/aE)TeT, dE. (3) 

The measured electrical conductivity can then be expressed as 

dJ/dE = (aJ /aT)EdT/dE+ (aJ/EJ'Fp)EdTp/dE + (aJ/aE)T.,Tp. (4) 

If we make the formulation less general and write J = u8(T, Tp)E,  then 

For brevity we call the term in brackets on the RHS of (5) uc. 
When the DC field applied to the film is zero and the sensing current is kept very small 

so that the energy gained by the electrons is less than the thermal energy, the experiment is 
in equilibrium, T, = Tp and U, Y 0, hence the measured resistance is the static resistance. 
When the DC field is increased from zero and the system has reached a steady state, the 
magnitude of uc will be greater than zero so that the AC and DC conductivities will differ. 
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The difference between the AC and DC conductivities depends on @uS(Ta, Tp)/aT) 
and dT/dE for both the electron and phonon temperatures. To determine the 
quantities (aus(Te, TP)/aThp and (au8(T, Tp)/aTp)Tc we can use the measured equilibrium 
temperature dependence of the resistance. In general the static resistance can be written as 

where Rj(T., Tp) represent independent processes in the system. The coefficients of each 
Ri(T,, Tp) can be obtained from the equilibrium temperature dependence of the measured 
resistance. The terms dT,/dE and dTp/dE are related to the amount of energy transferred 
to the electron system from the DC electric field. This problem has been discussed in detail 
elsewhere [13] and it has been shown that [4,5] 

(7) 
1 f+oDj(m)(n(w9 G) - n b  Ts)) do 

where Dj(o) is the phonon density of states for mode j ,  n(o .  T) is a Bose distribution 
evaluated at a temperature T, T A ~  is the time for phonons of mode j to escape from the 
film, and &m) is the electron-phonon scattering time for the corresponding mode. The 
relationship between the electron temperature, T,, the substrate temperature, T,, and E can 
be obtained after numerically solving (7). In the case of strong acoustic coupling between 
the microstructure and the substrate, and describing the electron-phonon coupling by the 
Pippard formalism [14]. we have recently shown [13] that Te cx as predicted earlier 
[E]. Furthermore, we showed that the power law relationship between T, and E depends 
on the strength of the acoustic coupling. For each value of Te the steady-state phonon 
distribution n(w) can be calculated from which the function T,(E) can be obtained. Hence, 
the non-ohmic behaviour of a mesoscopic system is related to the relaxation times & and 
t jP(m)  through dT,/dE and dTp/dE and if the exact functional form of the relaxation times 
were known, (5) could be used to determine the relationship between the static and dynamic 
conductivities. 

The connection between the static and dynamic conductivities in the non-ohmic system 
may also be determined using a procedure discussed by Payne et al [ 1 I] and more recently by 
Lane eta1 [12]. This procedure relies on the fact that for experiments in which the electrons 
are heated only by an applied DC electric field, the electron and phonon temperatures are 
only functions of E ,  from which J = u8(E)E.  The measured dynamic conductivity is 
simply 

J .  E = 
j r& + rip (m) 

dJ/dE = E du,(E)/dE + uS(E) (8) 

where the first term on the RHS can be identified as U, which, as discussed above, is 
dependent on T& and T ~ ~ ( o ) .  Therefore, calculating the average value of the dynamic 
conductivity up to the applied field gives the static conductivity 

from which it is possible to determine the trajectory describing the non-equilibrium 
electronic characteristics of the structure on the surface defined by J = us(T,, Tp) E .  
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3. Discussion 

We have applied the analysis to the experiments of Nabity and Wyboume [16]. In these 
experiments a DC electric field was used to heat the electrons in 1 p m  x 10 p m  x 250 A 
Au-Pd films deposited on silicon substrates. The Coulomb anomaly has been shown to 
be the dominant low-temperature resistance correction in Au-Pd films [8] and was used to 
measure the electron temperature. Nabity and Wybourne studied the films in two situations: 
first, to provide good thermal contact to the film, the substrate and film were immersed in 
liquid helium; and second, the film was placed in a vacuum. For the present discussion we 
concentrate on the first experimental situation in which the acoustic coupling between the 
film and its surrounding is strong. 

The static resistance of the films used in the experiments can be expressed as the sum 
of two terms 

(10) 

where Rjnt(Te) is a Coulomb anomaly term, and Ro(T,, Tp) is a Drude term that includes 
electron-phonon and impurity scattering. In equilibrium the electrons and phonons in the 
microstructure are maintained at a common constant temperature Ts. The equilibrium 
resistance of the films as a function of TS is shown in figure 1 and is expressed as 
A R / R  = ( R ( T )  - Ro~q) /Ro~q where, R w  is the minimum measured resistance. At 
temperatures below the minimum, the resistance rises logarithmically which is consistent 
with the Coulomb anomaly in a two-dimensional system [9]. Above the minimum, the 
resistance rise is described by a power law that originates from the increasing electron- 
phonon coupling strength as the temperature is increased. The Coulomb and Drude terms, 
and the total equilibrium resistance are shown by the dashed, dotted and solid curves, 
respectively, in figure 1. 

R ( T ,  Tp) = R d C )  + R D ( T ~ ,  Tp) 

T (U E (V cm-1) 
Figure 1. Fit to the equilibrium data of Nabity and 
Wybourne [I61 using the Coulomb anomaly (- - -) 
and the Drude term (. . . . . .) conlributions to the total 
resistance. The solid curve is Ule sum of the two data, 
contributions and the squares represent the experimental 
data. 

Figure 2. The circles show the measured dynamic 
resistance due to self-healing. The squares show the 
swic resistance and the solid curve is the fit to the 

When a DC electric field is applied to the film the electrons and the phonons warm up 
and reach different steady-state temperatures. In this situation the relative contribution to 
the total resistance from R i d T )  and R d T ,  Tp) is different than in equilibrium because 
each term has a different dependence on T, and Tp. The measured dynamic resistance as 
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a function of E is shown in figure 2. To obtain the static resistance we have applied (9) 
to the data, the effect of which is seen in figure 2. The static resistance is then modelled 
using (1). (2) and (7), in which the adjustable parameters are r:%, r&(m). Using a three- 
dimensional phonon density of states, the F'ippard model to describe the electron-phonon 
interaction [14] and & = d/vj  which is appropriate for perfect acoustic coupling, where d 
is the film thickness and wj is the velocity of sound for mode j .  we obtain a fit to the data 
shown by the solid line in figure 2. The material parameters used are the same as those 
reported previously [ 161, except the electron-phonon coupling strength has been increased 
by a factor of four. We note that such a straightforward fit to the data is not obtained for the 
film in vacuum. In thii case it appears that the frequency dependence of the integrand in (7) 
needs to be weakened, which is consistent with the suggestion of reduced dimensionality 
for the phonons in thin films with weak acoustic coupling to the surroundings [I ,  161. 

From the fit to the data we can also obtain T,(E) and Tp(E),  as shown in figure 3. From 
these relationships the function Tp(Te) can be determined and the non-equilibrium problem 
can be reduced to J = ns(Te)E. The steady-state characteristic of the film can then be 
obtained from (IO) and describes a trajectory on the surface defined by J = us(Te)E, as 
shown in figure 4. We note that the equilibrium trajectory does not lie on the steady-state 
surface and so it is difficult to compare in a simple way the two trajectories. 

Te _,I' 

_:.' Tp 

__..' 
Figure 3. Relationship between electric field E, the 
electron temperalure T. and the phonon temperature 
Tp, calculated using the Pippard formalism 1141 for 

.I 1 10 the electron-phonon interaction and strong acoustic 
coupling between the film and the substrate. E (V cm-1) 

Figure 4. The steadystate 
surface defined by J = 
us(T,)E. The solid c w e  is 
the steadystate characteristic 
of the film. The field axis 
has been scaled to suppress 
the large consant term that 
comes from impurity scatter- 
ing. 
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Finally, it is possible to compare the steady-state and equilibrium resistances by using 
the fact that the resistance R = R(T., Tp). In this way we can plot a R, Te, T, surface 
and show the evolution of both the equilibrium and the static steady-state resistance as 
trajectories on the same surface, as shown in figure 5 .  

Figure 5. The evolution of the equilibrium and 
steady-state static resistances as a function of T. 
and ‘Ip are shown by lhe dashed and solid CUN~S,  

respectively. 

4. Conclusion 

We have shown that in the presence of a DC electric field the dynamic resistance measured 
by an AC technique can be used to determine the static resistance of a microstructure. 
The size of the non-ohmic effects in the microstructure are related to the electron-phonon 
coupling and the acoustic coupling of a particular system. The analysis we have presented 
is general and, therefore, will be applicable to a calculation of the effects of self-heating in 
other systems. 

This work was supported by the National Science Foundation under grant No DMR- 
9019525. MNW is grateful to J M Parpia for helpful discussions and for providing a 
preprint of [12]. 
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